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A mechanism that induces charge density variations in corrugated graphene is proposed. Here it is shown
how the interplay between lattice deformations and exchange interactions can induce charge separation, i.e.,
puddles of electrons and holes, for realistic deformation values of the graphene sheet. The induced charge
density lies in the range of 1011–1012 cm−2, which is compatible with recent measurements.
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The ability to isolate and manipulate graphene—single
layers of carbon atoms packed in a honeycomb lattice—has
opened and boosted the experimental study of the properties
of two-dimensional �2D� massless Dirac fermions.1–3 The ex-
istence of a strictly 2D crystal structure is puzzling in itself,
as, according to theory and experiments, perfect 2D crystals
cannot exist in a free state.4–6

Recently, transmission electron microscopy experiments7

have resolved that suspended graphene sheets are not per-
fectly flat but exhibit microscopic roughness or ripples such
that the surface normal varies by several degrees and the
out-of-plane deformation can reach 1 nm. This deformation
corresponds to a rather large strain, 1%, but is sustainable
without plastic deformations or generation of defects.7 Also,
layers placed on SiO2 seem to follow the corrugation of the
substrate.8,9 The height and width of these ripples are consis-
tent with models which allow the carbon ions to form differ-
ent types of bonds.10

Recent single-electron transistor-based experiments11

have evidenced the existence of electron and hole puddles of
densities �1010–1011 cm−2 in the vicinity of the neutrality
point. The existence of these puddles could be simply related
to the presence of a disorder potential induced by the
substrate.12,13 An alternative to this explanation bears on the
existence of ripples which leads to a modulation of the hop-
ping amplitudes between carbon atoms. This modulation af-
fects the electronic structure in a twofold manner. First, the
modulation induces an effective magnetic field which
changes locally the density of states, but does not separate
charge.14 In this respect it has been argued in Ref. 15 that a
one-dimensional deformation of the graphene sheet will form
zero-energy Landau levels corresponding to an effective
magnetic field of tens of teslas. This will increase the com-
pressibility of the system and eventually would induce elec-
tronic phase separation. Second, second-neighbor hopping
changes can induce a potential on the carriers which does
separate charge.14 An additional source of change in the local
density of states has been suggested to come from local
Fermi velocity changes induced by the curvature associated
to the ripples.16 This effect induces charge inhomogeneities
in doped graphene, but in the presence of electron-hole sym-
metry, cannot explain the existence of electron-hole puddles
in undoped graphene.

In this paper we propose that because of the dependence
of the exchange energy on the density of carbon atoms, the
strain modulation produced by the ripples induces a charge

modulation in undoped graphene. In order to emphasize and
highlight the effect of the exchange on the charge inhomo-
geneity we have disregarded in this work the dependence of
the hopping parameter on next-neighbor distance. This is a
justified assumption as in graphene a variation of the hop-
ping amplitude can be described by means of a fictitious
vector potential which, in general, does not induce signifi-
cant changes in the density of states.14 In other words, the
degeneracy of the Landau levels and their contribution to the
compressibility15 will be strongly suppressed if a randomly
curved graphene sheet7,10 is considered.

In the following we first point out how the existence of
ripples in the graphene surface creates a modulation of the
distance between first-neighbor carbon atoms. Then, within
the Hartree-Fock approximation, we obtain the total energy
of the system as a function of the distance between first-
neighbor atoms, d, and of the extra charge per carbon atom,
�. Finally, we show that a long-wavelength modulation of the
lattice parameter in the graphene sheet can induce a charge
density modulation in undoped graphene.

To simulate the experimental electron diffraction
patterns,7 it is needed to assume a ratio L /h�10 between the
lateral size of the ripples, L, and the out-of-plane displace-
ment h �see Fig. 1�. A prudent estimate for the typical lateral
size of the crumpling has been estimated to be between 2 and
20 nm.7 In our calculation we consider the following out-of-
phase modulation:

z�Ri� = h�sin�GRx,i� + sin�GRy,i�� , �1�

where G=2� /L and the vectors Ri are the position of the
carbon atoms in a perfectly flat graphene sheet. The average

FIG. 1. �Color online� Schematic view of graphene with peri-
odic ripples. L denotes the lateral extent of the ripples and h the
out-of-plane displacements of the carbon atoms.
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distance between an atom and its three first neighbors de-
pends on the position of the considered atom and is given by

d�Ri� � d̃�1 +
h2G2

8
�cos�2GRx,i� + cos�2GRy,i��	 , �2�

d̃=d0�1+h2G2 /4� being the average distance between carbon
atoms in the presence of the ripple and d0 the equilibrium
distance between the C atoms in flat graphene. Expression
�2� indicates that a modulation in the out-of-plane position of
the carbon atoms implies a modulation in the average dis-
tance between them.

The electronic active states of graphene are the bands
formed by the carbon pz orbitals which are ordered in a hon-
eycomb lattice �triangular lattice with two atoms per unit
cell�. The band structure is accurately described by means of
a first-neighbor tight-binding Hamiltonian with a unique
hopping parameter t. Because of the bipartite character of the
honeycomb lattice, the Hamiltonian in reciprocal space is
represented by a 2�2 matrix. In undoped graphene there is
one electron per carbon atom and the conduction and valence
bands touch at two nonequivalent points of the Brillouin
zone, which are called Dirac points.

For wave vectors near the Dirac points the electronic
structure can be described by a Dirac Hamiltonian of the
form

Hkin = �vFk · � , �3�

where � are the Pauli matrices, k is the electron momentum
measured with respect the Dirac point, and the Fermi veloc-
ity only depends on the hopping energy t and the next-
neighbor distance d0,

�vF =
3

2
td0. �4�

The eigenvalues and eigenvectors of Hamiltonian Eq. �3� are

�±�k� = ± �vF
k
 �±�k� =
eik·r

�2
� 1

±ei	k
	 , �5�

where 	k=arctan kx /ky.
The use of the continuum Dirac Hamiltonian for describ-

ing the properties of graphene requires the introduction of a
maximum value of momenta, kc, which is chosen to keep the
number of states in the Brillouin zone fixed, i.e., gd�kc

2

= �2��2 /S0. Here gd=2 is the Dirac points degeneracy and
S0=3�3d0

2 /2 is the unit cell area.
When doping graphene with electrons or holes the extra

carriers form a Fermi sea with Fermi wave vector kF

=�4�
n
 / �gdgs�, where n is the 2D density of added charge
and gs=2 is the spin degeneracy. The kinetic energy of the
system per carbon atom is given by

Ekin��� = S0
�

3�
vF�− kc

3 + kF
3� = − t� �

6�3
	1/2

�23/2 − 
�
3/2� ,

�6�

where � is the extra charge per carbon atom with respect the
intrinsic situation. Note that due to the linear dispersion of
the bands, when we discard the variation of t on distance, the

kinetic energy per carbon atom does not depend on the dis-
tance between atoms. From the expression of the kinetic en-
ergy, Eq. �6�, there is always a kinetic energy cost associated
with modulating the charge in undoped graphene.

The exchange contribution to the total energy per carbon
atom has the form17–19

Eex = −
gsgd

4
S0 �

s,s�,k,q

v�q�Fs,s��k,k + q�ns�k�ns��k + q� ,

�7�

where s and s� is the band index �±1�, v�q�=2�e2 /
q is the
2D Fourier transform of the Coulomb interaction, 
 is the
dielectric constant of the system, ns�k� is the Fermi occupa-
tion function of the state s ,k�, and Fs,s��k ,k+q� is the
square of the overlap between the wave functions �s�k� and
�s��k+q�,20,21

Fs,s��k,k + q� =
1

2
�1 + ss� cos 	� , �8�

with 	 the angle between the wave vectors k and k+q. For
Coulomb interaction, the factor �8� makes the exchange in-
teraction larger between states in the same band. In the ex-
pression �7� we have neglected the exchange energy between
electrons belonging to different Dirac cones. This is appro-
priated in the long-wavelength approximation because the
difference in momentum between states coming from differ-
ent Dirac points is very large.

Following the notation of Ref. 17 the exchange energy per
carbon atom can be written as

Eex�d,�� = −
1

16�2

e2


d�2�

�3
	3/2

��23/2R1�1� + 
�
3/2R1�1� + �23/2R2��
�

2
	�

�9�

where the functions Rn�a� are defined in Ref. 17. In the limit
of small extra charge one can approximate

R1�1� � 3.776,

R2��
�

2
	 �

�

3
�3 +�
�


2
ln�
�


2
+ ¯ � . �10�

In Eq. �9� the first term corresponds to the exchange energy
of the full occupied valence band, the second term the ex-
change energy of the extra electrons or holes, and the last
term the variation of the exchange energy because of the
interaction between the extra carriers and the valence band
electrons. Note that the last term in Eq. �9� changes sign with
the electron on hole character of the extra carriers.

Expressions �6� and �9� have been obtained for a uniform
system. For long-wavelength modulations of d and �, the
total energy per carbon atom can be written as
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ET =
1

S
� dr�Ekin„��r�… + Eex„d�r�,��r�…� . �11�

This equation couples a modulation of the first-neighbor dis-
tance between carbon atoms with a modulation of the elec-
tron density.

In undoped graphene a modulation d�R� of the form de-
scribed in Eq. �2� will produce, in the linear regime, a modu-
lation of the electric charge of the form

��R� = �1�cos�2GRx,i� + cos�2GRy,i�� , �12�

where the amplitude of the charge modulation, �1, is ob-
tained by minimizing the total energy, Eq. �11�. To lowest
order, the charge amplitude �1 only depends on the ratio h /L
and on a dimensionless coupling constant defined as

g =
e2/
0

�vF
. �13�

The constant g indicates the ratio between the Coulomb and
the kinetic energy of the electron system.

For values larger than a critical coupling constant, gc
�2.18, the total energy does not present a minimum as func-
tion of �1. This indicates that the system is unstable against
more correlated phases, and therefore the lower-order calcu-
lation fails. This value of the coupling constant is consider-
ably smaller than the critical value of g �g�5.3� needed for
the occurrence of instabilities towards highly correlated
states in flat graphene.17 For values of g�2.18 the total en-
ergy presents a minimum and the electronic system reacts to
the lattice deformation by modulating the charge according
to Eq. �12�. In Fig. 2 we plot the value of �1 that minimize
the total energy as function of the coupling constant for dif-
ferent values of the ratio h /L.

The distance between carbon atoms in graphene and the
hopping amplitude are quantities well established: t
�2.5 eV and d0=1.42 Å. Therefore a realistic estimation of
the coupling constant g only requires knowledge of the value
of the dielectric constant. This should take account both the
effect of the screening current in the substrate and the weak
intrinsic screening in graphene.22 We estimate that depending
on whether the graphene sheet is freely suspended or it is

placed on top of an insulator, the dielectric constant would
take values in the range 3�
�4. For these values of 
, the
coupling constant takes values in the range 0.66�g�0.88.
For these values of g, we can see in Fig. 2 that the use of the
lower-order coupling between h and �1 is appropriate.

For an intermediate coupling constant g=0.75, we obtain
�1�9� h2

L2 �2
which, for values of the ratio h /L in the range

0.05–0.1, implies values of �1 in the range 5.6�10−5–0.9
�10−4. This corresponds to density modulations in the range
2.25�1011–3.6�1012 cm−2. From this estimate we con-
clude that a modulation of the out-of-plane position of the
carbon atoms of amplitude h�1–2 nm in a lateral size L
�10–20 nm induces a modulation in the charge density of
the order of 1011 cm−2. This magnitude of the charge modu-
lation agrees with the density of charge in the electron-hole
puddles observed by single-electron transistor-based experi-
ments.11 Interestingly, in suspended graphene the contribu-
tion of the substrate to the dielectric constant is practically
suppressed. In this case the coupling constant becomes larger
than in the case of graphene placed on a dielectric. Therefore
we expect a higher-density modulation in suspended
graphene than the observed in graphene on SiO2.

It is also pertinent to estimate the importance of the Har-
tree repulsion on the values of the charge density modula-
tion. The Hartree energy per carbon atom takes the form

EH =
S0

8�2�
G�

2�e2


G�
n�G��n�− G�� =

1

8�23�3
�1

2 L

d0

e2


d0
.

�14�

In the above expression n�G�� is the G�-component Fourier
transform of the charge. For values of the dielectric constant
and L we obtain that the Hartree energy is much smaller than
the kinetic and exchange energy and the values obtained for
the charge density modulation are practically unaffected by
the Hartree repulsion.

In addition to the effect discussed in this work one should
also consider the influence of the hopping dependence on
lattice strain discussed in Refs. 14 and 15. Realistic estimates
of the influence of second-neighbor hopping variations indi-
cate that these are typically smaller than the one discussed
here. In any case, both effects are compatible. Regarding the
formation of Landau levels and their influence on the com-
pressibility, we have verified numerically23 that the density
of states close to the neutrality point is not seriously affected
by the effective magnetic fields when crumpled graphene
with uncorrelated ripples is taken into consideration. This
contrasts with the strong influence that periodic ripples exert
on the density of states near the Dirac point.15

We notice that the exchange interaction between carriers
produces a coupling between a modulation of the distance
between first-neighbor atoms in graphene and a charge den-
sity modulation. This mechanism connects the presence of
ripples in undoped graphene with the existence of electron-
hole puddles of density up to 1012 cm−2. These densities are
of the same order than those observed recently in single-
electron transistor measurements.11 In suspended graphene
the absence of substrate makes the exchange energy stronger
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FIG. 2. �Color online� Amplitude of the charge modulation per
carbon atom, �1, as a function of the coupling constant for different
values of the ratio h /L.
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and we predict that this increase will produce a higher modu-
lation of the charge density.
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